Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission.
نویسندگان
چکیده
Glutamate dehydrogenase (GDH), encoded by GLUD1, participates in the breakdown and synthesis of glutamate, the main excitatory neurotransmitter. In the CNS, besides its primary signaling function, glutamate is also at the crossroad of metabolic and neurotransmitter pathways. Importance of brain GDH was questioned here by generation of CNS-specific GDH-null mice (CnsGlud1(-/-)); which were viable, fertile and without apparent behavioral problems. GDH immunoreactivity as well as enzymatic activity were absent in Cns-Glud1(-/-) brains. Immunohistochemical analyses on brain sections revealed that the pyramidal cells of control animals were positive for GDH, whereas the labeling was absent in hippocampal sections of Cns-Glud1(-/-) mice. Electrophysiological recordings showed that deletion of GDH within the CNS did not alter synaptic transmission in standard conditions. Cns-Glud1(-/-) mice exhibited deficient oxidative catabolism of glutamate in astrocytes, showing that GDH is required for Krebs cycle pathway. As revealed by NMR studies, brain glutamate levels remained unchanged, whereas glutamine levels were increased. This pattern was favored by up-regulation of astrocyte-type glutamate and glutamine transporters and of glutamine synthetase. Present data show that the lack of GDH in the CNS modifies the metabolic handling of glutamate without altering synaptic transmission.
منابع مشابه
Ionotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملThe Relationship between Glutamate and Multiple Sclerosis
Glutamate is the most important excitatory neurotransmitter in the central nervous system which is involved in synaptic transmission, brain development, synaptic plasticity, learning, and memory. Normally, the enzymatic destruction of glutamate does not occur in the synaptic and extracellular space, but glutamate is removed through specific transporter proteins, leading to stabilization of glut...
متن کاملDeletion of Glutamate Delta-1 Receptor in Mouse Leads to Enhanced Working Memory and Deficit in Fear Conditioning
Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins w...
متن کاملParawixin1: a spider toxin opening new avenues for glutamate transporter pharmacology.
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from glutamatergic nerve terminals, glial and neuronal glutamate transporters remove glutamate from the synaptic cleft to terminate synaptic transmission and to prevent neuronal damage by excessive glutamate receptor activation. In this issue of Molecular Pharmacology, Fontana et al. (p. 12...
متن کاملDeletion of Glutamate Delta-1 Receptor in Mouse Leads to Aberrant Emotional and Social Behaviors
The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1) and glutamate δ2 (GluD2) receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 123 3 شماره
صفحات -
تاریخ انتشار 2012